

Pathological analysis of the deposition of IL-6 in the central nervous tissues in Neuromyelitis Optica Spectrum Disorders

Y Takai¹, T Misu¹, C Namatame¹, Y Mastumoto¹, T Takahashi^{1,3}, M Aoki¹, K Fujihara⁴

- 2. Department of Neurology, National Hospital Organization Tonezawa National Hospital, Tonezawa 3. Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan

Background

Neuromyelitis Optica Spectrum Disorders (NMOSD) is an astrocytopathic disease associated with anti-aquaporin-4 (AQP4) antibody. Interleukin-6 (IL-6) contributes to the production of AQP4 antibody¹, and CSF-IL-6 levels are markedly elevated in NMOSD²⁻⁴. Additionally, recent clinical trials revealed that IL-6 receptor inhibitors are effective in preventing relapse of NMOSD4-7. However, the pathogenic role of IL-6 in the central nervous tissues of NMOSD remains unclear.

Objective

To clarify the deposition of IL-6 in the central nervous tissues in NMOSD and the possible pathogenetic implications.

Materials and Methods

With immunohistochemical techniques, we examined staining pattern of IL-6 in the different stages of astrocytopathic lesions in 18 autopsied cases of NMOSD.

Results

The onset age was 54.5 years (median, range 14-79), and the disease duration was 22.5 months (0.6-324). IL-6 was mainly detected at fibers in the perivascular space, pia matter and tissues surrounding astrocytopathic lesions, in 86% (25/29 lesions) of acute lesions and in 24% (8/33 lesions) of chronic ones. In particular, in the acute lesions with active complement deposition, IL-6 was often seen at the perivascular areas (74% in perivascular areas, 32% in pia matter, 5% in surrounding tissues), while in the subacute lesions, IL-6 was commonly deposited at surrounding tissues of asctocytopathic lesions (18% in perivascular areas, 9% in pia matter, 82% in surrounding tissues). IL-6 deposition was not seen outside of the astrocytopathic lesions. Interestingly, the expression pattern of IL-6 receptor was very similar to that of IL-6.

[Talbe-1. Summary of clinical presentation]

Pt	age at onset, yr	sex	disease duration, mo	•	AQP4 antibody positivity	Pathological Staging
1	78	F	2	0.5	+	Acute
2	63	М	0.75	0.75	+	Acute
3	57	М	8	0.5	+	Acute~Subacute
4	53	F	3	2	+	Acute~Subacute
5	46	F	252	12	+	Chronic
6	71	F	120	36	+	Chronic
7	56	F	228	108	+	Chronic
8	46	F	156	108	+	Chronic
9	35	F	132	NA	NA	Acute~Chronic
10	43	F	240	NA	NA	Acute~Chronic
11	39	M	144	12	NA	Acute~Chronic
12	79	M	9	NA	NA	Subacute~Chronic
13	66	F	12	0.75	NA	Acute~Chronic
14	77	M	3	3	NA	Subacute~Chronic
15	65	F	28	6	NA	Subacute~Chronic
16	50	F	21	NA	NA	Chronic
17	14	F	60	2	NA	Chronic
18	38	F	324	4	NA	Chronic

Pt: patient, yr: year, mo: month, AQP4: aquaporin4, F: female, M: male, NA not applicable

[Figure-3. Relationship between the staining pattern of IL-6 and the pathological stage of astrocyte

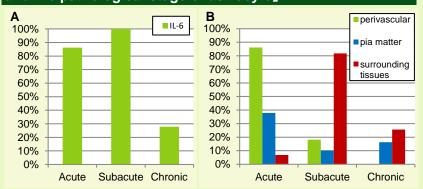
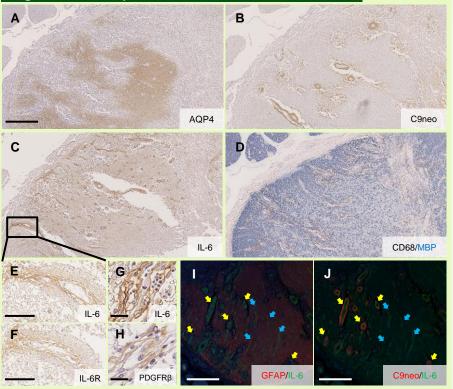
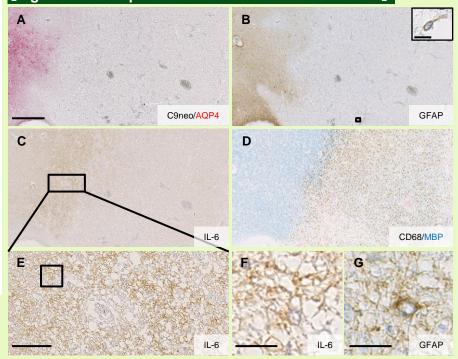




Figure-3. Relationship between the staining pattern of IL-6 and the pathological stage of astrocyte. (A) IL-6 was observed i lesions) of acute, 100% (11/11 lesions) of subacute and 28% (12/43 lesions) of chronic lesions defined by the astrocytopathy stagin acute lesions, IL-6 was predominantly deposited at the perivascular areas (86% perivascular, 38% pia matter, 7% surrounding tissues of astcotycepathic lesions (subacute lesions: 18% per pia matter, 82% surrounding tissues, chronic lesions: 0% perivascular, 16% pia matter, 26% surrounding tissues).

[Figure-1. IL-6 deposition in acute NMOSD lesions]

[Figure-2. IL-6 deposition in subacute NMOSD lesions]

AQP4: aquaporin4, GFAP: glial fibrillary acidic protein, IL-6: interleukin-6, MBP: myelin basic protein

Conclusion

Our study showed that IL-6 deposition spread from the perivascular space to surrounding tissues of NMOSD lesions as time proceeded, suggesting that IL-6 may contribute to the lesion development.

(1) Norio Chihara, et al. Proc Natl Acad Sci U S A. 108(9):3701-6, 2010. (2) Uzawa A, et al. Mult Scler. 16(12):1443-52, 2010. (3) Içöz S, et al. Int J Neurosci. 120(1):71-5, 2010. (4) Uzawa, et al. Clin Chim Acta. 469:144-149, 2017. (5) Araki M, et al. Neurology. 82(15):1302-6, 2014. (6) Ringelstein M, et al. JAMA Neurol. 72(7):756-63, 2015. (6) Yamamura T, et al. N Engl J Med. 381:2114–2124, 2019. (7) Traboulsee A, et al. Lancet Neurol. 19:402–412, 2020.