Fluoxetine modulates Th17-immune response via 5-HT2B-receptors in multiple sclerosis.

M. Melnikov*, A. Sviridova, M. Pashenkov, A. Boyko

Department of Neurology, Neurosurgery and Medical Genetic of Pirogov Russian National Research University & Laboratory of Clinical Immunology, Institute of Immunology, Moscow

Introduction

In multiple sclerosis (MS), psychological stress may enhance the production of proinflammatory cytokines and promote exacerbations of the disease. Serotonin (5hydroxytryptamine (5-HT) is one of the key neurotransmitters in CNS that is involved in developing psychological and cognitive impairments Fluoxetine is a selective serotonin reuptake inhibitor (SSRI), which also has an immunomodulatory effect.¹

Objective

This study aimed to clarify the effects of SSRI fluoxetine on Th17-immune response in MS.

Materials and methods

Patients

Thirty patients with a documented diagnosis of MS according to the McDonald criteria (modification 2010) were examined.² All patients had a relapsing–remitting form of the disease. Their main demographic and clinical characteristics are shown in **Table 1**. All patients were subjected to a standard neurological examination with assessment of the EDSS score.³ All patients were non-smoking and had no mental disorders, according to the Beck Depression Inventory and cognitive impairments, according to Montreal Cognitive Assessment. All patients were examined during clinical remission. All patients had been treated with glatiramer acetate for more than one year. At the time of blood sampling, all the patients studied had not been treated with corticosteroid or SSRIs therapy for more than six months. The control group consisted of twenty healthy donors matched with patients by sex and age (**Table 1**). All patients signed the written informed consent to participate in this study. The study was approved by the ethics committee of the Russian National Research Medical University (protocol №192).

Table 1. Clinical and demographic characteristics of MS patients and healthy subjects. Data are medians (25th; 75th percentiles)

Factor	MS patients, n=30	Healthy subjects, n=20	
Age, years	29 (24; 32)	30.0 (27.8; 34.5)	
Men/women (% women)	10/20 (66.7)	8/12 (60)	
Duration of MS, years	2 (2; 5)	NA*	
EDSS score	1.5 (1.5; 2)	NA*	
* NA – not applicable			

Table 2. Distribution of subpopulations of blood CD4+ and Th17-cells (flow cytometry) and concentration of 5-HT and 5-HIAA in blood plasma (HPLC) in MS patients and in healthy subjects.

Factor	MS patients, n=30	Healthy subjects, n=20	
CD4 ⁺ T-cells, % relative to lymphocytes	39.4 (36.1; 45.9)	39.0 (36.0; 48.0)	
CD4+CD26+CD161+-Th17-cells, % relative to CD4+ T-cells	15.0 (12.4; 18.0)	18.2 (15.6; 23.0)	
5-HT, pmole/ml	609.2 (387.3; 775.4)	669.4 (468.9; 855.4)	
5-HIAA, pmole/ml	13.4 (10.9; 18)	7.9 (3.6; 11.5)	

Flow cytometry

The percentage of circulating Th17-cells was determined by flow cytometry. Th17-cells were identified as CD4+CD26+CD161+ events and quantified as percentage of these events in relation to all CD4+-T-cells.^{4,5}

CD4+ T-cells cultures and stimulation

To determine functional activity of Th17- and Th1-cells, CD4⁺ T-cells were isolated from PBMCs by magnetic cell sorting (Milteny Biotec, Germany). Then CD4⁺ T-cells at a concentration of 8×10^4 per 200 µl per well were plated in 96-well U-bottomed culture plates in duplicate and stimulated with anti-CD3/anti-CD28-microbeads (Life Technologies, Norway) for 72 hours whereafter culture supernatants were collected and stored at -70° C.

To assess the effect of fluoxetine on Th17-cells function, CD4⁺ T-cells were cultured in the presence of fluoxetine (Tocris, Switzerland) at a concentration of 10^{-6} M whereafter anti-CD3/anti-CD28 microbeads were added to the cultures. To study the involvement of 5-HT_{2B}-receptors in fluoxetine-mediated modulation of cytokine production, some samples of CD4⁺ T-cells were pre-incubated with antagonist (RS 127445) or agonist (BW 7233C86) of 5-HT_{2B}-receptors (Tocris, Switzerland) (both at 10^{-6} M) whereafter fluoxetine and anti-CD3/anti-CD28 microbeads were added to the cultures. In addition, in some experiments, CD4⁺ T-cells were pre-incubated in the presence of antagonist or agonist of 5-HT_{2B}-receptors and activated by anti-CD3/anti-CD28 microbeads.

5-HT and 5-hydroxyindolacetic acid evaluation. The level of 5-HT and its

Table 3. The secretion of cytokines by CD4⁺ T-cells in MS patients and in healthy subjects.

Cytokine	Stimulation	MS p	MS patients, n=30			Healthy subjects, n=20		
	None		0 (0; 4)		4 (0; 9)			
IL-17, pg/ml	Anti-CD3 / anti-CD28	732	732 (321; 1201)		696 (105; 984)			
	None		7 (0; 24)		6 (0; 34)			
IFN-γ, pg/ml	Anti-CD3 / anti-CD28	4934	4934 (2776; 7377)		4781 (2964; 5519)			
GM-CSF,	None		0 (0; 6)		0 (0; 9)			
pg/ml	Anti-CD3 / anti-CD28	44	440 (202; 751)		425 (162; 846)			
A 140- 120- 100- % 80- 20- 0- 0- 10	B = 140 - 120 - 120 - 100 -			C 140- 120- % 100- S-100- 40- 40- 20- 0				
CD3/CD28 – + - Fluoxetine – – -	- + + CD3/CD28 + Fluoxetine	- + + +	- + + +	CD3/CD28 Fluoxetine	- + + +	- + + +		
MS patients	Healthy subjects	MS patients	Healthy subjects		MS patients	Healthy subjects		

Figure 1. The influence of fluoxetine on IL-17 (A), IFN- γ (B), and GM-CSF (C) production by stimulated CD4⁺ T-cells in MS patients and healthy subjects. Horizontal lines at the graphs correspond to the median and whiskers indicate to 25th and 75th percentiles.

metabolite 5-hydroxyindolacetic acid (5-HIAA) in blood plasma and culture supernatants were determined by high-performance liquid chromatography (HPLC). Data are expressed as pmol/ml.

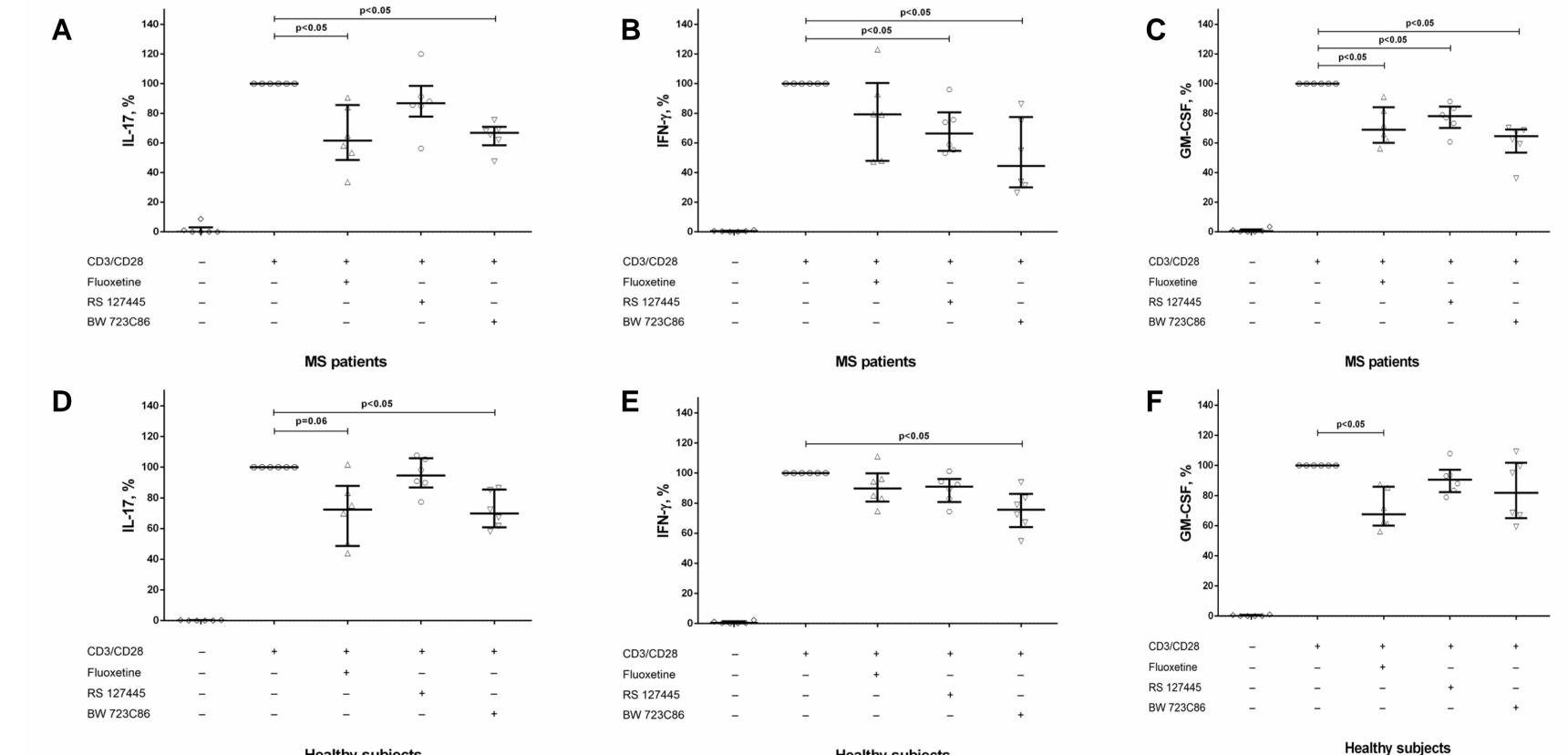
Cytokine evaluation

Levels of IL-17, IFN- γ , and GM-CSF in the supernatants were determined by ELISA (Invitrogen, USA). In all cases of ELISAs, the instructions of the kit manufacturers were followed. Data are expressed as pg/ml or as the percentage of cytokine production by stimulated cells in the absence of fluoxetine and antagonist or agonist of 5-HT2B-receptors.

Statistical analysis

The statistical analysis of the results was performed using Prizm 6 software.

The nonparametric Wilcoxon test was used to compare two groups. Differences were considered statistically significant if p<0.05.


Results

The percentages of CD4⁺ T-cells, Th17-cells as well as IL-17, IFN- γ , and GM-CSF production by activated CD4⁺ T-cells in MS patients and healthy subjects were comparable **(Table 2, Table 3)**. The concentrations of 5-HT and 5-HIAA were also comparable between the groups (**Table 2**).

Fluoxetine suppressed IL-17, IFN-γ, and GM-CSF production by CD4⁺ T-cells in both groups (Fig. 1) without affecting cell viability and proliferative responses (data not shown). The blockade of 5-HT_{2B}-receptors with specific antagonist reduced the inhibitory effect of fluoxetine on IL-17, IFN-γ, and GM-CSF production in MS patients (Fig 2A, Fig 2B and Fig 2C) and GM-CSF in healthy subjects (Fig 2F), while activation of 5-HT_{2B}-receptors by specific agonist further reduced IL-17 production in both groups (Fig 2A and Fig 2D) and IFN-γ production in healthy subjects (Fig 2E).

Hatty subjects Heatty State State

Figure 2. The role of 5-HT_{2B}-receptors in fluoxetine-mediated suppression of IL-17, IFN-γ, and GM-CSF production by stimulated CD4⁺ T-cells in MS patients (A, B, C) and healthy subjects (D, E, F).

Conclusions

These data suggest an anti-inflammatory role of fluoxetine in MS which could be mediated by the 5-HT_{2B}-receptors activation.

References

- Melnikov M, Rogovskii V, Boyko A, Pashenkov M. The influence of biogenic amines on Th17-mediated immune response in multiple sclerosis. Mult Scler Relat Disord. 2018 Feb 12;21:19-23. doi: 10.1016/j.msard.2018.02.012. Review.
- Polman C, Reingold S, Banwell B et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology. 2011;69(2):292-302
- 3. Kurtzke, J.F., 1983. Rating neurologyc impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452.
- 4. Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, Thimme R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J. Immunol. 2012 Jun 1;188(11):5438-47.
- Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, Querci V, Fambrini M, Liotta F, Levings MK, Maggi E, Cosmi L, Romagnani S, Annunziato F. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol. 2010;40(8):2174-2181. doi:10.1002/eji.200940257

Disclosure

The reported study was funded by RFBR according to the research project № 18-315-00436

Figure 3. The influence of 5-HT_{2B}-receptors agonist on IL-17, IFN-γ, and GM-CSF production by stimulated CD4⁺ T-cells in MS patients (A, B, C) and healthy subjects (D, E, F).

Healthy subjects

The 28TH Annual Meeting of the European Charcot Foundation (ECF), 15–19 November 2020, Virtual

Healthy subjects