CARDIOVASCULAR RISK FACTORS AFFECT BRAIN VOLUME IN YOUNG MS PATIENTS

^{1,2}R. Bonacchi, ¹D. Mistri, ¹A. Meani, ¹A. Zanghì, ^{1,2,3,4}M. Filippi, ^{1,2}M. A. Rocca

¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, ²Neurology Unit, ³Neurophysiology Unit IRCCS San Raffaele Scientific Institute, Milan, Italy; ⁴Vita-Salute San Raffaele University, Milan, Italy.

INTRODUCTION and **PURPOSE**

Cardiovascular (CV) risk factors (RF) have been associated with changes in clinical and MRI outcomes in patients with multiple sclerosis (MS):

- The presence of vascular risk factors, coronary heart disease or peripheral arterial disease is associated with a substantially increased risk of disability progression in MS [1].
- MS patients with migraine, hyperlipidemia or a high comorbidity burden (≥ 3 among CV RF and psychiatric comorbidities) had an increased relapse rate over 2 years [2].
- Better lipidic profile (higher HDL cholesterol) was associated with lower gadolinium+ lesion volume [3].
- An increase in typical MS lesions was mainly seen in smokers; this CV RF is most likely to be present from onset of MS, whereas other CV RF effects may be partly mitigated by treatment [4].

Previous studies have not set an age-limit, but older patients may be affected by cerebral small vessel disease-related damage in addition to MS. Neither have previous studies assessed the presence vs absence of CV RF, without attempting to grade strength of exposure (e.g., pack-years for smoking, time and control of individual CV RF).

In this study, we aimed to investigate the impact of CV RFs on T2-hyperintense lesion volume and brain atrophy in patients with MS under age 50 years

METHODS

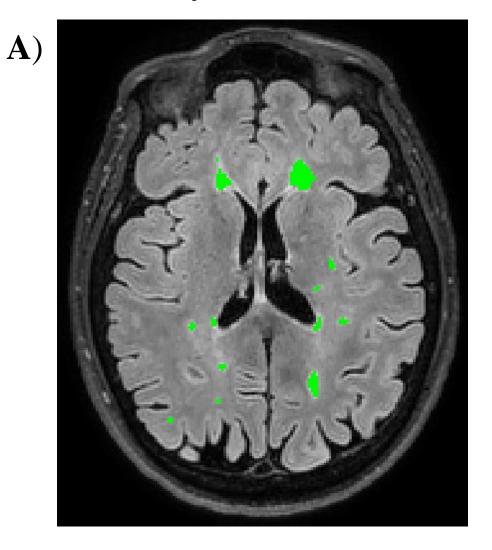
<u>Subjects</u>: 124 MS (79 relapsing-remitting, 45 progressive) patients and 95 healthy controls (HC).

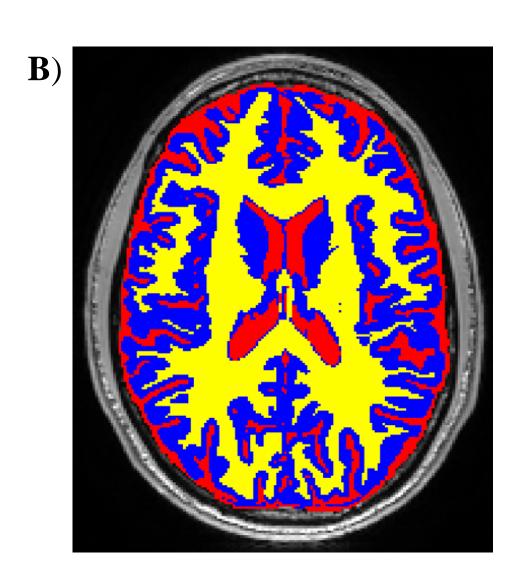
<u>Neurological assessment</u>: Expanded Disability Status Scale rating and CV RF assessment at time of MRI acquisition.

<u>Traditional CV risk factors</u> were assessed:

- having smoked ≥5 pack-years
- hypertension
- dyslipidemia
- diabetes/prediabetes

"Stringent" CV risk factors were assessed:


- having smoked ≥10 pack-years
- hypertension under treatment
- dyslipidemia under treatment
- diabetes under treatmentFigure 1B)
 r): brain and cervical SC pulse sequences for


MRI acquisition (3.0 Tesls scanner): brain and cervical SC pulse sequences for the assessment of lesions and atrophy.

MRI analysis:

- T2-hyperintense LV quantification (T2LV) on 3D T2-weighted and FLAIR images (**Figure 1A**)
- SIENAX 2.0 for quantification of normalized WM (nWMV), GM (nGMV) and total brain (nBV) volumes on 3D T1-weighted images (**Figure 1B**)

Figure 1. MRI analysis

Statistical analysis:

- Fisher exact test, Mann-Whitney and t student test for demographic and clinical variables
- Linear models adjusted for age, sex, disease duration, phenotype (RRMS vs PMS) and treatment were used to determine the impact of CV risk factors on MRI variables

RESULTS

Demographic and clinical variables of study participants (Table 1).

	HC (n=95)	MS (n=124)	MS vs HC p value
Men/Women	48/47	50/74	0.17
Mean age (SD) [years]	35 ± 8 $(18 - 50)$	36 ± 8 (18 - 50)	0.37
Phenotype RRMS/PMS	_	79/45	_
Median disease duration (IQR) [years]	_	8 (2-17)	_
Median EDSS score (IQR)	_	2.5 (1.5-5.5)	_
DMT none/1 st /2 nd line	_	22/61/41	_

Table 2. Burden of CV RF in HC and MS patients

	HC (n=95)	MS (n=124)	MS vs HC p value
Classic RF (1/≥2)	19 (20%) / 4 (4%)	48 (39%) / 15 (12%)	< 0.001
Smoked ≥5 pack-years	16 (17%)	42 (34%)	0.005
Hypertension	4 (4%)	14 (11%)	0.08
Dyslipidemia	8 (8%)	19 (15%)	0.15
Diabetes/prediabetes	2 (2%)	5 (4%)	0.70
Stringent RF (1/>1)	10 (11%) / 3 (3%)	30 (24%) / 8 (6%)	0.01
Smoked ≥10 pack-years	8 (8%)	23 (19%)	0.05
Hypertension on treatment	3 (3%)	12 (10%)	0.06
Dyslipidemia on treatment	4 (4%)	10 (8%)	0.28
Diabetes on treatment	1 (1%)	4 (3%)	0.39

By using linear models, we performed the below reported group comparisons.

Table 3. Presence (RF+) vs absence (RF-) of at least one traditional CV RF

	HC RF- (n=72)	HC RF+ (n=23)	HC RF- vs RF+ p value	MS RF- (n=61)	MS RF+ (n=63)	MS RF- vs RF+ p value
Median T2-LV (IQR) [mL]	$0.00 \\ (0.00 - 0.15)$	0.00 (0.00 - 0.07)	0.76	2.10 (0.88 – 4.51)	3.00 (0.90 – 7.14)	0.27
nBV [mL]	1582 ± 34	1563 ± 40	0.34	1531 ± 66	1508 ± 64	0.06
nGMV [mL]	892 ± 35	880 ± 31	0.79	863 ± 42	845 ± 39	0.09
nWMV [mL]	690 ± 27	683 ± 28	0.11	668 ± 39	664 ± 35	0.26

Table 4. Presence (RF+) vs absence (RF-) of at least two traditional CV RFs

	HC RF- (n=91)	HC RF+ (n=4)	HC RF- vs RF+ p value	MS RF- (n=109)	MS RF+ (n=15)	MS RF- vs RF+ p value
Median T2-LV (IQR) [mL]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.28 (0.00 - 0.48)	0.30	2.17 (0.87 – 6.22)	3.23 (1.64 – 6.86)	0.27
nBV [mL]	1580 ± 34	1553 ± 65	0.08	1524 ± 65	1481 ± 68	0.003
nGMV [mL]	890 ± 33	868 ± 54	0.10	856 ± 42	836 ± 35	0.01
nWMV [mL]	689 ± 27	671 ± 29	0.14	668 ± 37	645 ± 40	0.03

Table 5. Presence (RF+) vs absence (RF-) of at least one stringent CV RF

	HC RF- (n=82)	HC RF+ (n=13)	HC RF- vs RF+ p value	MS RF- (n=86)	MS RF+ (n=38)	MS RF- vs RF+ p value
Median T2-LV (IQR) [mL]	0.00 $(0.00 - 0.13)$	0.00 (0.00 - 0.26)	0.45	1.90 (0.77 – 4.31)	5.73 (1.73 – 8.29)	0.03
nBV [mL]	1581 ± 34	1551 ± 45	0.27	1534 ± 62	1484 ± 64	<0.001
nGMV [mL]	891 ± 33	870 ± 39	0.67	863 ± 40	833 ± 39	0.006
nWMV [mL]	690 ± 27	681 ± 23	0.16	671 ± 37	651 ± 34	0.003

For all tables, variables are mean \pm SD unless otherwise specified.

CONCLUSIONS

- The presence of CV RFs is associated with brain atrophy, involving both the GM and WM, in MS patients, even under age 50
- CV RFs seem to have synergistic effects, determining brain atrophy even for levels of exposure that may often be overlooked by clinicians, when present in combination

REFERENCES. [1] Marrie et al., *Neurol* 2010; [2] Kowalec et al., *Neurol* 2010; [3] Weinstock-Guttman et al., *Journal of Neuroinflammation* 2011; [4] Geraldes et al., *JNNP* 2020.