M. Melnikov¹⁻³ (main author), A. Sviridova¹, M. Pashenkov³, A. Boyko^{1,2}.

¹ Federal Center of Brain research and Neurotechnology of the Federal Medical Biological Agency of Russia, Department of Neuroimmunology, Moscow, Russia

² Pirogov Russian National Research Medical University, Department of Neurology, Neurosurgery and Medical Genetics, Moscow, Russia

³ National Research Center Institute of Immunology of the Federal Medical Biological Agency of Russia, Laboratory of Clinical Immunology, Moscow, Russia

Introduction: Dopamine may participate in multiple sclerosis (MS) pathogenesis by modulating immune cell activity and cytokine production. This study aimed to clarify the effect of dopamine on Th17-cells, which plays a critical role in MS pathogenesis.

Methods: Forty patients with relapsing-remitting MS during clinical remission and twenty-five healthy subjects were examined. The concentrations of dopamine in blood plasma and culture supernatants were measured by high-performance liquid chromatography. The percentage of blood Th17-cells was determined by flow cytometry (CD4⁺CD161⁺). To assess the effect of dopamine on Th17-cells, purify CD4⁺-T-cells were cultured in the presence of dopamine (10⁻⁵ M) and stimulated with anti-CD3/anti-CD28-antibodies. The levels of IL-17, IFN- γ , and GM-CSF in culture supernatants were assessed by ELISA. To study the involvement of dopaminergic receptors in dopamine-mediated immunomodulation, some samples of CD4⁺-T-cells were pre-incubated with antagonist of D₁- or D₂-dopaminergic receptors, whereafter dopamine and anti-CD3/anti-CD28-antibodies were added to the cultures. In some experiments, CD4⁺-T-cells were pre-incubated by anti-CD3/anti-CD28-antibodies.

Results: The concentrations of dopamine in plasma and culture supernatants were not different between the groups. The percentages of Th17-cells, as well as the production of cytokines, were also comparable. Dopamine suppressed cytokine production in both groups (p<0.0001) without affecting on cell viability and proliferative response. Blockade of D₁-receptors enhanced the inhibitory effect of dopamine on cytokine production in both groups (p<0.05), while blockade of D₂-receptors decreased the inhibitory effect of dopamine in both groups (p<0.05). The blockade of D₁-receptors suppressed cytokine production in both groups (p<0.05). The blockade of D₁-receptors suppressed cytokine production in both groups (p<0.01).

Conclusion: These data suggest the inhibitory effect of dopamine on Th17-cells in MS, which could be mediated by the D_2 -dopaminergis receptors.