

Cytotoxic B cells in MS patients

29th Annual Meeting of the European Charcot Foundation

Vinícius de O. Boldrini¹, Ana M.Marques¹, Raphael P.S. Quintiliano¹, Adriel S. Moraes¹, Carla R. A. V. Stella^{1,2}, Ana Leda F. Longhini^{1,3}, Marilia Andrade¹, Alfredo Damasceno², Alessandro S. Farias¹, Leonilda M. B. Santos¹ ¹Autoimmune Research Laboratory – Institute of Biology (IB) – University of Campinas (UNICAMP) – Brazil ²Department of Neurology – University of Campinas (UNICAMP) – Brazil

UNICAMP

³Departament of Immunology and Rheumatology – University of Alabama at Birmingham – USA

BACKGROUND

During relapsing-remitting MS (RRMS), CD8+ T lymphocytes infiltrate into the central nervous system (CNS) being found close to oligodendrocytes and neurons. Moreover, in severe/fatal MS relapses a massive infiltration of CD8⁺ T cells expressing granzyme B (GzmB) was described in CNS parenchyma, evidencing an aberrant cytotoxic behavior. At the same time, B cells and other subsets were demonstrated to share cytotoxic behavior in several diseases. Since cytotoxicity is thought to be a central mechanism for neurodegeneration, we intend to investigate whether "cytotoxic" B cells occur in RRMS patients.

METHODS

104 RRMS patients (19 Untreated, 15 Glatiramer Acetate [GA], 24 Interferon- β [IFN], 14 Fingolimod [FTY] and 32 Natalizumab [NTZ]), according to the McDonald criteria were recruited in Neurology Clinic at University of Campinas Hospital (UNICAMP). Also, **58 healthy subjects** were included in the control groups. All subjects signed a term of consent approved by the University Committee for Ethical Research (CAAE: 53022516.3.0000.5404).

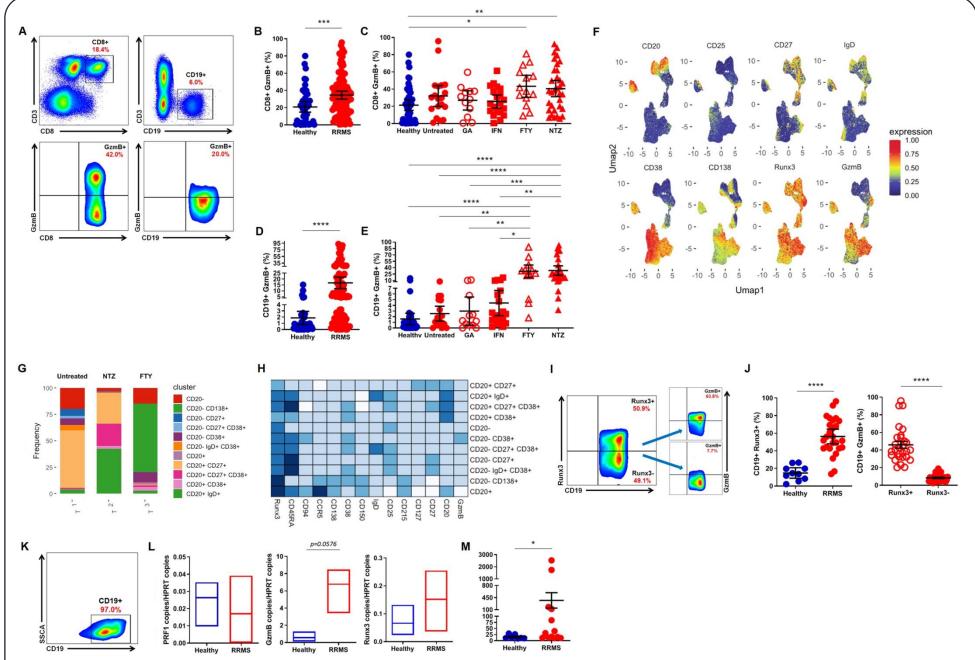


Figure 1: GzmB-expressing B cells in MS patients. (A) Gate strategy for CD8⁺GzmB⁺T lymphocytes and CD19⁺GzmB⁺ B cells. (B) Proportion (%) of CD8⁺GzmB⁺T lymphocytes in reated RRMS patients (*GA*, *IFN*, *FTY*, *NTZ*) (red), untreated MS (red) and healthy donors (blue). (D) Proportion (%) of CD19⁺GzmB⁺ B cells in RRMS patients (*GA*, *IFN*, *FTY*, *NTZ*) (red), untreated MS (red) and healthy donors (blue). (D) Proportion (%) of CD19⁺GzmB⁺ B cells in RRMS patients (*GA*, *IFN*, *FTY*, *NTZ*) (red), untreated MRS (red) and healthy donors (blue). (E) Proportion (%) of CD19⁺GzmB⁺ B cells in treated RRMS patients (*GA*, *IFN*, *FTY*, *NTZ*) (red), untreated RRMS (red) and healthy donors (blue). (F) UMAP gated in CD19⁺ B cells from RRMS patients with different conditions non identified and based on the arcsine-transformed expression of the markers. (G) Barplot representing the frequency of each subpopulation in CD19⁺ B cells. (H) Heatmap of the expression of the markers in subpopulations manually identified in CD19⁺ B cells. (I) Gate strategy for GzmB-derived CD19⁺Runx3⁺ B cells. (J) Proportion (%) of CD19⁺Runx3⁺ B cells in RRMS patients (red) and healthy donors (blue) and proportion (%) of GzmB-derived CD19⁺Runx3⁺ B cells in RRMS patients (red) and healthy donors (blue). (M) Concentration (pg/mL) of GzmB-derived from CD19⁺ B cells supernatants from RRMS patients (red) and healthy donors (blue). (M) Concentration (pg/mL) of GzmB-derived from CD19⁺ B cells supernatants from RRMS patients (red) and healthy donors (blue). **p<0.05*, ***p<0.01*, ****p<0.001*, ****p<*

CONCLUSION

Increased percentage of CD19⁺GzmB⁺ B cells was observed in FTY and NTZ subgroups when compared to GA, IFN and untreated RRMS patients. Moreover, using high-dimensional FACS (UMAP), we observed that CD19⁺CD138⁺ plasma cells, but not CD19⁺CD20⁺ B cells, seem to represent a main subset of B cells involved in GzmB-expression. Also, Runx3, a master regulator of cytotoxic activity classically described in CD8⁺ T lymphocytes, seems to be associated with GzmB expression in CD19⁺ B cells in MS patients. Thus, in addition to antigen presentation and cytokine production, ectopic cytotoxicity may represent a novel antibody-independent mechanism derived from B cells with possible implications for MS pathophysiology. Further investigations, in larger cohorts, may elucidate the eventual clinical/therapeutic relevance of "cytotoxic" B cells during MS.