Characterisation of the immune system after ocrelizumab treatment in multiple sclerosis

<u>Beckers L^{1,2,*}</u>, Baeten P^{1,2,*}, Swinnen D^{1,2,3}, Hamad I^{1,2,3}, Tavernier S^{4,5}, Van Wijmeersch B^{1,2,6}, Popescu V^{1,2,6}, Kleinewietfeld M^{1,2,3,§}, Broux B^{1,2,§}, Fraussen J^{1,2,§}, Somers V^{1,2,§}

¹ University MS Center (UMSC), Hasselt-Pelt, Belgium; ² Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; ³ VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium; ⁴ Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; ⁵ Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium; ⁶ Noorderhart, Rehabilitation and MS Center, Pelt, Belgium; * contributed equally as first authors; § contributed equally as senior authors.

Introduction

B cells are important contributors to the chronic inflammatory processes in multiple sclerosis (MS) by producing **autoantibodies**, inducing pro-inflammatory **T cell responses** and secreting **pro-** and anti-inflammatory cytokines. B cell depletion by the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) is a highly effective treatment for **relapsing-remitting (RR)MS** and was the first immunosuppressive therapy that was approved for early **primary-progressive (PP)MS**. However, detailed information about the effect of OCR on B cell subsets and other immune cells in MS is still lacking.

AIM: To investigate the phenotypic changes of the immune system after OCR treatment in both RRMS and PPMS patients over time

Material and methods

→ B cells, T cells, monocytes, dentritic cells and natural

killer cells were analysed using flow cytometry

Preliminary analysis was performed only on samples for

Donors	Ν	3 time points a	Age ^a		Gender, %F	EDSS ^b	Disease duration ^c		
HC	20	N.A.	N.A.			± 11.2	50	N.A.	N.A.
RRMS	18	10	10			± 10.5	61	3	9.6
PPMS	22	9	9			± 8.7	41	5	5.2
Donors		ime to next dose	Ageª	Gender		EDSS [®] Disease		duration	
RRMSext1		8 months	42	F		2	-	LO	
RRMSext2		9 months	34		F	2.5		8	

UNSC | Universitair

VIB-UGENT CENTER FOR INFLAMMATION

RESEARCH

ONDATION

^a In years, mean ± SD; ^b mean; ^c In years; F: female; EDSS: expanded disability status scale; N.A.: not applicable; HC: healthy control, M: month, PBMC: peripheral blood mononuclear cells.

Results

OCR mainly affects CD20⁺ immune cell subsets

which the 3 time points were available

(A) tSNE map showing the major immune cell subsets within the viable cell population of PPMS patients (n = 9) before and after 6M of OCR treatment. Viable cells from each sample were down-sampled to 5,000 events. Manually determined gates are plotted on the tSNE maps. (B) Percentage CD3⁺CD20⁺ T cells were gated within the viable cells of all MS patients (n = 19) before, after 6 and 12M of OCR. (C) Number of CD20⁺ NK cells were gated within the CD20⁺ cells of all MS patients (n = 19) before, after 6 and 12M of OCR. (C) Number of CD20⁺ NK cells were gated within the CD20⁺ cells of all MS patients (n = 19) before, after 6 and 12M of OCR. Mean levels + SD are depicted. *** p < 0.0001.

OCR induces a shift in the distribution of the B cell population

tSNE1

tSNE map showing the major B cell subsets within the lymphocyte gate of all MS patients (n = 19) before and after 6M of OCR treatment. Lymphocytes from each sample were down-sampled to 1,000 events. Manually determined gates are plotted on the tSNE maps. ASC: antibody-secreting cell, NCSM: non class-switched memory, CSM: class-switched memory, DN: double negative

- Significantly decreased % of naive and IgG⁺CSM B cells; increased % of ASC, transitional and IgA⁺ DN B cells after OCR treatment
- No significant difference between RRMS and PPMS patients in the distribution of the immune cells subsets (data not shown)

Increasing time between 2 OCR doses results in repopulation of early B cell subsets

(A) Percentage CD20⁺ B cells of RRMS patients (n = 2) before, 6M, 12M and 20/21M after OCR treatment.(B) tSNE map showing the major B cell subsets within the lymphocyte gate. Lymphocytes from each sample were down-sampled to 2,000 events. Manually determined gates are plotted on the tSNE maps.

Conclusion

Besides depletion of CD20⁺ B, T and NK cells, OCR treatment induced changes in the distribution of B cell subsets in both RRMS and PPMS patients

Understanding the effect of OCR on innate and adaptive immune cell subsets

Correspondence: lien.beckers@uhasselt.be

