Humoral immune response to SARS-CoV2 vaccines in multiple sclerosis and controls

Gabriel Bsteh¹, Harald Hegen², Gerhard Traxler³, Nik Krajnc¹, Fritz Leutmezer¹, Franziska Di Pauli², Barbara Kornek¹, Paulus Rommer¹, Gudrun Zulehner¹, Sophie Dürauer⁴, Angelika Bauer², Sarah Kratzwald⁴, Sigrid Klotz⁴, Michael Winklehner⁴, Florian Deisenhammer², Michael Guger³, Romana Höftberger⁴, and Thomas Berger¹

¹Department of Neurology, Medical University of Vienna, Vienna, Austria ²Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria ³Department of Neurology 2, Med Campus III, Kepler University Hospital GmbH, Linz, Austria ⁴Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria

Presenting author:

Prof. Gabriel Bsteh, MD, PhD

Department of Neurology, Medical University of Vienna, Vienna, Austria

Waehringer Guertel 18-20, 1090 Vienna, Austria

Email: gabriel.bsteh@meduniwien.ac.at

Telephone: 0043 1 40400 31450

Keywords: Multiple sclerosis, COVID-19, SARS-CoV-2, risk, mortality, severity, disease-modifying treatment

Abstract

Background: Vaccination against SARS-CoV2 is mostly recommended for patients with multiple sclerosis (pwMS), although some disease-modifying treatments (DMT) might limit immune response. However, data informing on differences in efficacy and safety of available vaccines in MS patients are scarce.

Objective: To compare rate of humoral immune response and safety of SARS-CoV-2 vaccines in pwMS and healthy controls (HC).

Methods: In this multicenter prospective observational study on 456 pwMS and 116 HC, SARS-CoV-2 IgG response was measured using anti-spike protein-based serology 3 months after the first dose. The primary endpoint was defined as the proportion of patients developing protective antibodies (seroconversion), secondary endpoints included antibody titer, efficacy and safety parameters.

Results: Compared to 97.4% in HC, seroconversion occurred in 96.7% (88/91) of untreated MS patients, 97.1% (135/139) on immunomodulatory (IM-DMT) and 61.1% (138/226, p<0.001) on immunosuppressive DMT (IS-DMT). Specifically, seroconversion was lowest under antiCD20 monoclonal antibodies (CD20mAb; 52.6%) followed by sphingosine 1 receptor modulators (S1PM; 63.6%). Predictors of seroconversion were IS-DMT (OR 0.04; p<0.001), CD20 mAb (OR 0.03, p<0.001), S1PM (OR 0.05, p<0.001) and the combined group of cladribine and alemtuzumab (OR 0.18, p<0.001). In the S1PM subgroup likelihood of seroconversion increased with higher lymphocyte count (OR 1.31 per 0.1 G/l, p=0.035), while in patients on cladribine/alemtuzumab seroconversion was associated with time since last DMT intake (OR 1.38 per month) but not with lymphocyte count. In patients treated with CD20mAb, complete B-cell depletion significantly decreased probability of seroconversion (OR 0.52, p=0.038), whereas time since last DMT intake was not. Safety of SARS-CoV-2 vaccines in MS patients was excellent and similar to HC.

Conclusions: Humoral response to SARS-CoV2 vaccines in MS patients is generally excellent. While reduced by immunosuppressive DMT, most importantly by B-cell depleting CD20mAb and S1PM, protective humoral response is still expected in the majority of patients. SARS-CoV2 vaccination should be offered to every MS patient.